
Scalable many-light methods

Jaroslav Křivánek
Charles University in Prague

• Approximate indirect illumination by

1. Generate VPLs

2

Instant radiosity

2. Render with VPLs

• Large number of VPLs required
• True even for diffuse scenes
• Scalability issues

3

Ground truth 1,000 VPLs 100,000 VPLs

Instant radiosity with glossy surfaces

1. Generate many, many VPLs

2. Pick only the most relevant VPLs for rendering

4

Scalable many-light methods

• Choosing the right VPLs
– Per-pixel basis

• Lightcuts [Walter et al 05/06]

– Per-image basis
• Matrix Row Column Sampling [Hašan et al. 07]

– Somewhere in-between
• LightSlice [Ou & Pellacini 2011]
• Importance caching [Georgiev et al. 2012]

5

Scalable many-light methods

Scalable many-light rendering

Lightcuts
Multidimensional Lightcuts

Walter et al., SIGGRAPH 2005/2006

Slides courtesy Bruce Walter:
http://www.graphics.cornell.edu/~bjw/papers.html

http://www.graphics.cornell.edu/~bjw/papers.html�

• http://www.graphics.cornell.edu/~bjw/papers.html

7

Lightcuts

http://www.graphics.cornell.edu/~bjw/papers.html�
http://www.graphics.cornell.edu/~bjw/papers.html�

Complex Lighting

• Simulate complex illumination using VPLs
– Area lights
– HDR environment maps
– Sun & sky light
– Indirect illumination

• Unifies illumination

Area lights + Sun/sky + Indirect

Scalable

• Scalable solution for many point lights
– Thousands to millions
– Sub-linear cost

0

100

200

300

400

500

600

0 1000 2000 3000 4000

Number of Point Lights

Ti
m

e
(s

ec
s)

Standard
Ward
Lightcut

Tableau Scene

Lightcuts Problem

Visible
surface

Lightcuts Problem

Lightcuts Problem

Camera

Key Concepts

• Light Cluster
– Approximate many lights by a single brighter light

(the representative light)

Key Concepts

• Light Cluster
• Light Tree

– Binary tree of lights and clusters

Clusters

Individual
Lights

Key Concepts

• Light Cluster
• Light Tree
• A Cut

– A set of nodes that partitions the lights into
clusters

Simple Example

#1 #2 #3 #4

1 2 3 4

1 4

Light Tree

Clusters

Individual
Lights

Representative
Light

4

Three Example Cuts

1 2 3 4

1 4

4

1 2 3 4

1 4

4

1 2 3 4

1 4

4

Three Cuts

#1 #2 #4 #1 #3 #4 #1 #4

Three Example Cuts

1 2 3 4

1 4

4

1 2 3 4

1 4

4

1 2 3 4

1 4

4

Three Cuts

#1 #2 #4 #1 #3 #4 #1 #4

Good Bad Bad

Three Example Cuts

1 2 3 4

1 4

4

1 2 3 4

1 4

4

1 2 3 4

1 4

4

Three Cuts

#1 #2 #4 #1 #3 #4 #1 #4

Bad Good Bad

Three Example Cuts

1 2 3 4

1 4

4

1 2 3 4

1 4

4

1 2 3 4

1 4

4

Three Cuts

#1 #2 #4 #1 #3 #4 #1 #4

Good Good Good

Algorithm Overview

• Pre-process
– Convert illumination to point lights
– Build light tree

• For each eye ray
– Choose a cut to approximate the illumination

Convert Illumination
• HDR environment map

– Importance sampling

• Indirect Illumination
– Convert indirect to direct

illumination using Instant
Radiosity [Keller 97]

• Caveats: no caustics, clamping, etc.

– More lights = more indirect detail

Build light tree
• Cluster spatially close lights with similar

orientation

1 2 3 4

1 4

Light Tree

Clusters

Individual
Lights

Representative
Light

4

Choose a cut
• Approximate illumination with a bounded error
• Different cut for each pixel

Illumination Equation

result = Mi Gi Vi IiΣ
lights

Cluster Approximation

Cluster

result ≈ Mj Gj Vj IiΣ
lights

j is the representative light

Sum pre-computed
during light tree
construction

error < Mub Gub Vub Ii

Cluster Error Bound

Cluster

Σ
lights−

• Bound each term
– Visibility <= 1 (trivial)
– Intensity is known
– Bound material and

geometric terms using
cluster bounding volume

ub = upper bound

Perceptual Metric

• Weber’s Law
– Contrast visibility threshold is fixed percentage of

signal
– Used 2% in our results

• Ensure each cluster’s error < visibility threshold
– Transitions will not be visible
– Used to select cut

Perceptual Metric

• Problem:
– We don’t know the illumination so we don’t know

the threshold either
• (because threshold = 2% illumination)

• Solution:
– As we traverse the tree, gradually improve the

illumination estimate.
– Stop the traversal if the error bound for all cut

nodes is below threshold.

Cut Selection Algorithm

Cut

• Start with coarse cut (eg, root node)

Cut Selection Algorithm

Cut

• Select cluster with largest error bound

Cut Selection Algorithm

Cut

• Refine if error bound > 2% of total

Cut Selection Algorithm

Cut

Cut Selection Algorithm

Cut

Cut Selection Algorithm

Cut

Cut Selection Algorithm

Cut

• Repeat until cut obeys 2% threshold

Lightcuts (128s) Reference (1096s)

Error Error x16

Kitchen, 388K polygons, 4608 lights (72 area sources)

Combined Illumination

Lightcuts 128s

4 608 Lights
(Area lights only)

Avg. 259 shadow rays / pixel

Lightcuts 290s

59 672 Lights
(Area + Sun/sky + Indirect)

Avg. 478 shadow rays / pixel
(only 54 to area lights)

Lightcuts Reference

Error x 16Cut size

Scalable

• Scalable solution for many point lights
– Thousands to millions
– Sub-linear cost

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000

Number of Point Lights

Ti
m

e
(s

ec
s)

Standard
Ward
Lightcuts

0

100

200

300

400

500

600

0 1000 2000 3000 4000

Number of Point Lights

Ti
m

e
(s

ec
s)

Standard
Ward
Lightcut

Tableau Scene Kitchen Scene

• Data-driven stratification & importance
sampling

• Stratification
– Clustering of similar lights in the light tree

• Importance sampling
– Subdividing clusters with high contribution

41

Why does it work so well?

• Problem: Large cuts in dark areas

42

Main issue

Lightcuts Recap

• Key ingredients

– Upper bound on error

– Refinement of the highest-error nodes first

Multidimensional Lightcuts

http://www.graphics.cornell.edu/~bjw/papers.html

http://www.graphics.cornell.edu/~bjw/papers.html�

Problem

• Simulate complex, expensive phenomena
– Complex illumination
– Anti-aliasing
– Motion blur
– Participating media
– Depth of field

Pixel = L(x,ω)...
Lights
∫

Pixel
Area

∫
Aperture

∫
Volume

∫
Time
∫

Pixel = L(x,ω)...
Lights
∫

Pixel
Area

∫
Time
∫

Problem

• Simulate complex, expensive phenomena
– Complex illumination
– Anti-aliasing
– Motion blur
– Participating media
– Depth of field

Pixel = L(x,ω)...
Lights
∫

Pixel
Area

∫
Time
∫

Volume
∫

Problem

• Simulate complex, expensive phenomena
– Complex illumination
– Anti-aliasing
– Motion blur
– Participating media
– Depth of field

Pixel = L(x,ω)...
Lights
∫

Pixel
Area

∫
Time
∫

Volume
∫

Aperture
∫

• Complex integrals over multiple dimensions

– Requires many samples

Pixel = L(x,ω)...
Lights
∫

Pixel
Area

∫
Time
∫

Volume
∫

Aperture
∫

camera

Problem

Multidimensional Lightcuts

• Solves all integrals
simultaneously

• Accurate
• Scalable

0

600

1200

1800

0 100 200 300

Samples per pixel

Im
ag

e
tim

e
(s

ec
s) Supersampling

Multidimensional

Direct only (relative cost 1x) Direct+Indirect (1.3x)

Direct+Indirect+Volume (1.8x) Direct+Indirect+Volume+Motion (2.2x)

Camera

• Discretize full integral into 2 point sets
– Light points (L)
– Gather points (G)

Point Sets

Light points

Camera

• Discretize full integral into 2 point sets
– Light points (L)
– Gather points (G)

Point Sets

Light points

Camera

• Discretize full integral into 2 point sets
– Light points (L)
– Gather points (G)

Point Sets

Light points

Pixel

Gather points

• Discretize full integral into 2 point sets
– Light points (L)
– Gather points (G)

Point Sets

Light points

Gather points

• Sum over all pairs of gather and light points
– Can be billions of pairs per pixel

Pixel = Sj Mji Gji Vji IiΣ
(j,i)∈GxL

Discrete Equation

Product Graph

• Explicit hierarchy would be too expensive
– Up to billions of pairs per pixel

• Use implicit hierarchy
– Cartesian product of two trees (gather & light)

Light tree

Gather tree

Product Graph

L0 L1 L2 L3

L4 L5

L6

G1G0

G2

L0
L1 L2

L3

G0

G1

Product Graph

Light tree

Gather tree

X =
L0 L1 L2 L3

L4 L5

L6

G1G0

G2
G1

G0

G2

L0 L4 L1 L6 L2 L5 L3

Product Graph

Product Graph

Light tree

Gather tree

X =
L0 L1 L2 L3

L4 L5

L6

G1G0

G2
G1

G0

G2

L0 L4 L1 L6 L2 L5 L3

Product Graph

Product Graph

G1

G0

G2

L0 L4 L1 L6 L2 L5 L3

Product Graph

Product Graph

G1

G0

G2

L0 L4 L1 L6 L2 L5 L3

Product Graph

Product Graph

Light tree

Gather tree

X =
L0 L1 L2 L3

L4 L5

L6

G1G0

G2
G1

G0

G2

L0 L4 L1 L6 L2 L5 L3

Product Graph

Cluster Representatives

Cluster Representatives

• Collapse cluster-cluster interactions to point-cluster
– Minkowski sums
– Reuse bounds

from Lightcuts

• Compute maximum over multiple BRDFs
– Rasterize into cube-maps

• More details in the paper

Error Bounds

Algorithm Summary

• Once per image
– Create lights and light tree

• For each pixel
– Create gather points and gather tree for pixel
– Adaptively refine clusters in product graph until

all cluster errors < perceptual metric

L6

G2

L1 L2 L3L4 L5L0

G1

G0

• Start with a coarse cut

– Eg, source node of product graph

Scalability

L6

G2

L1 L2 L3L4 L5L0

G1

G0

• Choose node with largest error bound & refine

– In gather or light tree

Scalability

L6

G2

L1 L2 L3L4 L5L0

G1

G0

• Choose node with largest error bound & refine

– In gather or light tree

Scalability

L6

G2

L1 L2 L3L4 L5L0

G1

G0

• Repeat process

Scalability

L6

G2

L1 L2 L3L4 L5L0

G1

G0

• Until all clusters errors < perceptual metric

– 2% of pixel value (Weber’s law)

Algorithm summary

Results

• Limitations
– Some types of paths not included

• Eg, caustics

– Prototype only supports diffuse, Phong, and
Ward materials and isotropic media

Roulette

7,047,430 Pairs per pixel Time 590 secs
Avg cut size 174 (0.002%)

0

400

800

1200

1600

0 50 100 150 200 250 300

Im
ag

e t
im

e
(s

ec
s)

Gather points (avg per pixel)

Image time vs. Gather points

Multidimensional

Original lightcuts

Eye rays only

Scalability

Metropolis Comparison

Our result
Time 9.8min

Metropolis
Time 148min (15x)
Visible noise
5% brighter (caustics etc.)

Zoomed insets

Kitchen

5,518,900 Pairs per pixel Time 705 secs
Avg cut size 936 (0.017%)

180 Gather points X 13,000 Lights = 234,000 Pairs per pixel

Avg cut size 447 (0.19%)

Scalable many-light rendering

Matrix Row-Column sampling

Hašan et al., SIGGRAPH 2007

Slides courtesy Miloš Hašan:
http://www.cs.cornell.edu/~mhasan/

http://www.cs.cornell.edu/~mhasan/�

• http://miloshasan.net/
• Designed specifically for GPU rendering

(shadow mapping)
79

Matrix Row-Column sampling

http://miloshasan.net/�

Improving Scalability and Performance

10 min 13 min 20 min

3.8 sec 13.5 sec 16.9 sec

Brute force

(100k VPLs)

MRCS
(our result)

80

81

A Matrix Interpretation

Pixels
(2,000,000)

Lights (100,000)

• Compute sum of columns

82

Problem Statement

= Σ ()
Pi

xe
ls

Lights

83

Low-Rank Assumption

= Σ ()

Pi
xe

ls

Lights

• Column space is (close to) low-dimensional

84

Ray-tracing vs Shadow Mapping

Lights

Pi
xe

ls

Point-to-point visibility: Ray-tracingPoint-to-many-points visibility: Shadow-mapping

85

Computing Column Visibility

Shadow map at light
position

Surface
samples

• Regular Shadow Mapping Lights

Pi
xe

ls

1 shadow map

86

Row-Column Duality

Shadow map at
sample position

• Rows: Also Shadow Mapping! Lights

Pi
xe

ls

1 shadow map

Image as a Weighted Column Sum

Compute small
subset of columns

(i.e. pick some lights)

compute
weighted sum

• The following is possible:

Use rows to choose a good set of columns (=lights)
87

Lights

Pi
xe

ls

88

The Row-Column Sampling Idea

compute rows

(i.e. pick pixels,
compute contrib

from ALL lights for
each)

compute columns
(i.e. for the selected

lights, compute
contribution to all

pixels)

weighted
sum

?

choose columns
(=lights) and

weights

how to choose
columns and

weights?

Pi
xe

ls

Lights

89

Clustering Approach

Clustering
Choose

representative
columns

Columns

90

Reduced Matrix

Reduced
columns

• Algorithm:
1. Cluster reduced columns
2. Choose a representative in each cluster, with

probability proportional to weight
3. Approximate other columns in cluster by

(scaled) representative

• This is an unbiased Monte Carlo estimator
(of the sum of matrix columns)

• Which clustering minimizes its variance?

91

Monte Carlo Estimator

Weights and Information Vectors

• Weights wi

– Norms of reduced columns
– Represent the “energy” of the light

• Information vectors xi

– Normalized reduced columns
– Represent the “kind” of light’s contribution

93

Visualizing the Reduced Columns

Reduced columns:
vectors in high-

dimensional space

visualize as …

radius = weight

position = information vector

• Minimize:

• where:

94

The Clustering Objective

total cost of all clusters

cost of a
cluster

sum over all
pairs in it

weights squared distance
between information

vectors

Clustering Illustration

Strong but similar
columns

Weak columns
can be clustered
more easily

Columns with
various intensities
can be clustered

How to minimize?

• Problem is NP-hard
• Not much previous research
• Should handle large input:

– 100,000 points
– 1000 clusters

• We introduce 2 heuristics:
– Random sampling
– Divide & conquer

Clustering by Random Sampling

Very fast (use optimized BLAS)
Some clusters might be too small / large

Clustering by Divide & Conquer

Splitting small clusters is fast
Splitting large clusters is slow

Combined Clustering Algorithm

Combined Clustering Algorithm

101

Full Algorithm

Compute rows
(GPU)

Weighted sum

Assemble rows into
reduced matrix

Cluster reduced
columns

Choose
representatives

Compute columns
(GPU)

Lights

Pi
xe

ls

• 2.1m polygons
• Mostly indirect & sky illumination
• Indirect shadows

102

Example: Temple

Our result: 16.9 sec
(300 rows + 900 columns)

Reference: 20 min
(using all 100k lights)

5x diff

• 388k polygons
• Mostly indirect illumination
• Glossy surfaces
• Indirect shadows

103

Example: Kitchen

Our result: 13.5 sec
(432 rows + 864 columns)

Reference: 13 min
(using all 100k lights)

5x diff

• 869k polygons
• Incoherent geometry
• High-frequency lighting
• Kajiya-Kay hair shader

104

Example: Bunny

Our result: 3.8 sec
(100 rows + 200 columns)

Reference: 10 min
(using all 100k lights)

5x diff

105

Effect of exploration

rows = 300
28 sec

rows = 900
35 sec

Too few VPLs

#VPLs = 250k, # cols = 10k

106

Comparison

Lightcuts (2M VPLs)
30 sec

MRCS (250k VPLs)
35 sec

• Data-driven stratification & importance
sampling
– Same reason as for Lightcuts

• Stratification
– Split clusters with dissimilar lights

• Importance sampling
– Split clusters with high-contribution lights

107

Why does it work so well?

• Advantage
– Takes visibility into account in light selection

(reduced matrix contains the full light
contributions)

• Drawback
– Impossible to capture localized effects

• Low likelihood of getting the right row sample
• Global light selection

108

Comparison to Lightcuts

http://www.cs.dartmouth.edu/~fabio/publication.php?id=lightslice11

109

LightSlice

http://www.cs.dartmouth.edu/~fabio/publication.php?id=lightslice11�
http://www.cs.dartmouth.edu/~fabio/publication.php?id=lightslice11�

• Get the better from Lightcuts and MRCS

– Lightcuts: Localized selection of relevant lights

– MRCS: Take visibility into account in light
selection

110

LightSlice: Idea

• Cannot use shadow maps for row/column
sampling

• Clustering borrowed from the original MRCS
paper

111

LightSlice: The Algorithm

112

LightSlice: Matrix Slices

Image
Matrix slice
visualization

• Not really a fair comparison to MRCS
(uses ray traced visibility)

113

LightSlice: Results

114

Importance Caching

• Localized light (VPL) selection taking visibility
into account

1. Importance caching
– Pick image pixels (2000 - 3000)
– For each such pixel, compute and cache

contributions from all lights (i.e. matrix row)

2. Image rendering
– For each image pixel

• Collect nearby importance records
• Pick a VPL proportional to the cached contributions

115

Importance Caching: Algorithm

116

Cached light importance

Importance record 1 Importance record 2 Importance record 3

Contributions to
the record location
of individual lights

117

Possible problems

OK Occlusion Geometry factor Irrelevant

118

Solution: Multiple importances
Full light contribution Unoccluded contribution

Unoccluded contribution
w/ bounded G-term

Uniform
distribution

• Multiple importance sampling (MIS)
– See CG III slides

http://cgg.mff.cuni.cz/~jaroslav/teaching/2011-pg3/slides/krivanek-07-npgr010-2011-mc2.pptx

• New combination heuristic proposed in the paper

119

Distribution combination

http://cgg.mff.cuni.cz/~jaroslav/teaching/2011-pg3/slides/krivanek-07-npgr010-2011-mc2.pptx�

120

Results

121

Results: A 2-second rendering

• Fewer initial VPLs than any of the previous
algorithms (up to 10k)
– Because of memory limitations
– Must run in iterations if more VPLs needed

• No data-driven stratification

122

Importance Caching: Limitations

• Data-driven importance sampling may be
dangerous

– Non-zero contribution may be sampled with very
low, or even zero probability

– Being conservative is safer, but can reduce the
advantage of data-driven IS

– For more information see [Owen & Zhou 2000]
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.2813

123

Take-home message

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.2813�

• MRCS
– In theory suffers from the same problem, but
– light importance averaged over full columns, so it

works ok
– BTW: Why do you think there’s global clustering

in LightSlice 

• Lightcuts
– Has upper bounds so it knows which lights can be

safely skipped

124

How ‘bout Lightcuts and MRCS?

• Lightcuts [Walter et al 05/06]

• Matrix Row Column Sampling [Hašan et al. 07]

• LightSlice [Ou & Pellacini 2011]

• Importance caching [Georgiev et al. 2012]

125

Scalable many-light methods

• [Segovia et al. 07]: Metropolis instant radiosity
– http://www710.univ-lyon1.fr/~jciehl/bsegovia/bat710/public_html/papers/mir.html

Use Metropolis sampling to guide the VPL where
they can contribute to the image

• [Georgiev & Slussalek 2010]
– http://www.iliyan.com/p/publications.html
– Use rejection sampling to reject VPLs that do not

contribute significantly

126

Improved VPL distribution

http://www710.univ-lyon1.fr/~jciehl/bsegovia/bat710/public_html/papers/mir.html�
http://www.iliyan.com/p/publications.html�

	Scalable many-light methods
	Instant radiosity
	Instant radiosity with glossy surfaces
	Scalable many-light methods
	Scalable many-light methods
	Scalable many-light rendering��Lightcuts�Multidimensional Lightcuts
	Lightcuts
	Complex Lighting
	Scalable
	Lightcuts Problem
	Lightcuts Problem
	Lightcuts Problem
	Key Concepts
	Key Concepts
	Key Concepts
	Simple Example
	Three Example Cuts
	Three Example Cuts
	Three Example Cuts
	Three Example Cuts
	Algorithm Overview
	Convert Illumination
	Build light tree
	Choose a cut
	Illumination Equation
	Cluster Approximation
	Cluster Error Bound
	Perceptual Metric
	Perceptual Metric
	Cut Selection Algorithm
	Cut Selection Algorithm
	Cut Selection Algorithm
	Cut Selection Algorithm
	Cut Selection Algorithm
	Cut Selection Algorithm
	Cut Selection Algorithm
	Slide Number 37
	Combined Illumination
	Slide Number 39
	Scalable
	Why does it work so well?
	Main issue
	Lightcuts Recap
	Multidimensional Lightcuts
	Problem
	Problem
	Problem
	Problem
	Multidimensional Lightcuts
	Slide Number 50
	Point Sets
	Point Sets
	Point Sets
	Point Sets
	Discrete Equation
	Product Graph
	Product Graph
	Product Graph
	Product Graph
	Product Graph
	Product Graph
	Product Graph
	Slide Number 63
	Slide Number 64
	Error Bounds
	Algorithm Summary
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Results
	Roulette
	Slide Number 74
	Metropolis Comparison
	Kitchen
	Slide Number 77
	Scalable many-light rendering ��Matrix Row-Column sampling
	Matrix Row-Column sampling
	Improving Scalability and Performance
	A Matrix Interpretation
	Problem Statement
	Low-Rank Assumption
	Ray-tracing vs Shadow Mapping
	Computing Column Visibility
	Row-Column Duality
	Image as a Weighted Column Sum
	The Row-Column Sampling Idea
	Clustering Approach
	Reduced Matrix
	Monte Carlo Estimator
	Weights and Information Vectors
	Visualizing the Reduced Columns
	The Clustering Objective
	Clustering Illustration
	How to minimize?
	Clustering by Random Sampling
	Clustering by Divide & Conquer
	Combined Clustering Algorithm
	Combined Clustering Algorithm
	Full Algorithm
	Example: Temple
	Example: Kitchen
	Example: Bunny
	Effect of exploration
	Comparison
	Why does it work so well?
	Comparison to Lightcuts
	LightSlice
	LightSlice: Idea
	LightSlice: The Algorithm
	LightSlice: Matrix Slices
	LightSlice: Results
	Importance Caching
	Importance Caching: Algorithm
	Cached light importance
	Possible problems
	Solution: Multiple importances
	Distribution combination
	Results
	Results: A 2-second rendering
	Importance Caching: Limitations
	Take-home message
	How ‘bout Lightcuts and MRCS?
	Scalable many-light methods
	Improved VPL distribution

