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• Approximate indirect illumination by

1. Generate VPLs

2

Instant radiosity

2. Render with VPLs



• Large number of VPLs required
• True even for diffuse scenes
• Scalability issues
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Ground truth 1,000 VPLs 100,000 VPLs

Instant radiosity with glossy surfaces



1. Generate many, many VPLs

2. Pick only the most relevant VPLs for rendering
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Scalable many-light methods



• Choosing the right VPLs
– Per-pixel basis

• Lightcuts [Walter et al 05/06]

– Per-image basis
• Matrix Row Column Sampling [Hašan et al. 07]

– Somewhere in-between
• LightSlice [Ou & Pellacini 2011]
• Importance caching [Georgiev et al. 2012] 
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Scalable many-light methods



Scalable many-light rendering

Lightcuts
Multidimensional Lightcuts

Walter et al., SIGGRAPH 2005/2006

Slides courtesy Bruce Walter:
http://www.graphics.cornell.edu/~bjw/papers.html

http://www.graphics.cornell.edu/~bjw/papers.html�


• http://www.graphics.cornell.edu/~bjw/papers.html
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Lightcuts

http://www.graphics.cornell.edu/~bjw/papers.html�
http://www.graphics.cornell.edu/~bjw/papers.html�


Complex Lighting

• Simulate complex illumination using VPLs
– Area lights
– HDR environment maps
– Sun & sky light
– Indirect illumination

• Unifies illumination

Area lights + Sun/sky + Indirect



Scalable

• Scalable solution for many point lights
– Thousands to millions
– Sub-linear cost
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Lightcuts Problem

Visible
surface



Lightcuts Problem



Lightcuts Problem

Camera



Key Concepts

• Light Cluster
– Approximate many lights by a single brighter light 

(the representative light)



Key Concepts

• Light Cluster
• Light Tree

– Binary tree of lights and clusters

Clusters

Individual
Lights



Key Concepts

• Light Cluster
• Light Tree
• A Cut

– A set of nodes that partitions the lights into 
clusters



Simple Example
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Three Example Cuts
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Algorithm Overview

• Pre-process
– Convert illumination to point lights
– Build light tree

• For each eye ray
– Choose a cut to approximate the illumination



Convert Illumination
• HDR environment map

– Importance sampling

• Indirect Illumination
– Convert indirect to direct 

illumination using Instant 
Radiosity [Keller 97]

• Caveats: no caustics, clamping, etc.

– More lights = more indirect detail



Build light tree
• Cluster spatially close lights with similar 

orientation
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Choose a cut
• Approximate illumination with a bounded error
• Different cut for each pixel



Illumination Equation

result = Mi Gi Vi IiΣ
lights



Cluster Approximation

Cluster

result ≈  Mj Gj Vj IiΣ
lights

j is the representative light

Sum pre-computed 
during light tree 
construction



error < Mub Gub Vub Ii

Cluster Error Bound

Cluster

Σ
lights−

• Bound each term
– Visibility <= 1 (trivial)
– Intensity is known
– Bound material and 

geometric terms using 
cluster bounding volume

ub = upper bound



Perceptual Metric

• Weber’s Law
– Contrast visibility threshold is fixed percentage of 

signal
– Used 2% in our results

• Ensure each cluster’s error < visibility threshold
– Transitions will not be visible
– Used to select cut



Perceptual Metric

• Problem: 
– We don’t know the illumination so we don’t know 

the threshold either 
• (because threshold = 2% illumination)

• Solution: 
– As we traverse the tree, gradually improve the 

illumination estimate.
– Stop the traversal if the error bound for all cut 

nodes is below threshold.



Cut Selection Algorithm

Cut

• Start with coarse cut (eg, root node)



Cut Selection Algorithm

Cut

• Select cluster with largest error bound



Cut Selection Algorithm

Cut

• Refine if error bound > 2% of total



Cut Selection Algorithm

Cut



Cut Selection Algorithm

Cut



Cut Selection Algorithm

Cut



Cut Selection Algorithm

Cut

• Repeat until cut obeys 2% threshold



Lightcuts (128s) Reference (1096s)

Error Error x16

Kitchen, 388K polygons, 4608 lights (72 area sources)



Combined Illumination

Lightcuts 128s

4 608 Lights
(Area lights only)

Avg. 259 shadow rays / pixel

Lightcuts 290s

59 672 Lights
(Area + Sun/sky + Indirect)

Avg. 478 shadow rays / pixel
(only 54 to area lights)



Lightcuts Reference

Error x 16Cut size



Scalable

• Scalable solution for many point lights
– Thousands to millions
– Sub-linear cost
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• Data-driven stratification & importance 
sampling

• Stratification
– Clustering of similar lights in the light tree

• Importance sampling
– Subdividing clusters with high contribution

41

Why does it work so well?



• Problem: Large cuts in dark areas

42

Main issue



Lightcuts Recap

• Key ingredients

– Upper bound on error

– Refinement of the highest-error nodes first



Multidimensional Lightcuts

http://www.graphics.cornell.edu/~bjw/papers.html

http://www.graphics.cornell.edu/~bjw/papers.html�


Problem

• Simulate complex, expensive phenomena 
– Complex illumination
– Anti-aliasing
– Motion blur
– Participating media
– Depth of field
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Problem

• Simulate complex, expensive phenomena 
– Complex illumination
– Anti-aliasing
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– Participating media
– Depth of field
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• Complex integrals over multiple dimensions

– Requires many samples
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Multidimensional Lightcuts

• Solves all integrals
simultaneously

• Accurate
• Scalable
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Direct only (relative cost 1x) Direct+Indirect (1.3x)

Direct+Indirect+Volume (1.8x) Direct+Indirect+Volume+Motion (2.2x)



Camera

• Discretize full integral into 2 point sets
– Light points (L)
– Gather points (G)

Point Sets

Light points



Camera
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Camera

• Discretize full integral into 2 point sets
– Light points (L)
– Gather points (G)

Point Sets

Light points

Pixel

Gather points



• Discretize full integral into 2 point sets
– Light points (L)
– Gather points (G)

Point Sets

Light points

Gather points



• Sum over all pairs of gather and light points
– Can be billions of pairs per pixel

Pixel =       Sj Mji Gji Vji IiΣ
( j,i)∈GxL

Discrete Equation



Product Graph

• Explicit hierarchy would be too expensive
– Up to billions of pairs per pixel

• Use implicit hierarchy 
– Cartesian product of two trees (gather & light)



Light tree

Gather tree

Product Graph
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Product Graph
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Cluster Representatives



Cluster Representatives



• Collapse cluster-cluster interactions to point-cluster 
– Minkowski sums
– Reuse bounds

from Lightcuts

• Compute maximum over multiple BRDFs
– Rasterize into cube-maps

• More details in the paper

Error Bounds



Algorithm Summary

• Once per image
– Create lights and light tree

• For each pixel
– Create gather points and gather tree for pixel
– Adaptively refine clusters in product graph until 

all cluster errors < perceptual metric 



L6

G2
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G1

G0

• Start with a coarse cut

– Eg, source node of product graph

Scalability



L6

G2

L1 L2 L3L4 L5L0
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• Choose node with largest error bound & refine

– In gather or light tree

Scalability
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L6
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• Repeat process

Scalability



L6

G2

L1 L2 L3L4 L5L0
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G0

• Until all clusters errors < perceptual metric

– 2% of pixel value (Weber’s law)

Algorithm summary



Results

• Limitations
– Some types of paths not included

• Eg, caustics

– Prototype only supports diffuse, Phong, and 
Ward materials and isotropic media



Roulette

7,047,430 Pairs per pixel        Time 590 secs
Avg cut size 174 (0.002%)
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Metropolis Comparison

Our result
Time 9.8min

Metropolis
Time 148min (15x) 
Visible noise
5% brighter (caustics etc.)

Zoomed insets



Kitchen

5,518,900 Pairs per pixel        Time 705 secs
Avg cut size 936 (0.017%)



180 Gather points X 13,000 Lights = 234,000 Pairs per pixel

Avg cut size 447  (0.19%)



Scalable many-light rendering 

Matrix Row-Column sampling

Hašan et al., SIGGRAPH 2007

Slides courtesy Miloš Hašan:
http://www.cs.cornell.edu/~mhasan/

http://www.cs.cornell.edu/~mhasan/�


• http://miloshasan.net/
• Designed specifically for GPU rendering 

(shadow mapping)
79

Matrix Row-Column sampling

http://miloshasan.net/�


Improving Scalability and Performance

10 min 13 min 20 min

3.8 sec 13.5 sec 16.9 sec

Brute force

(100k VPLs)

MRCS
(our result)

80
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A Matrix Interpretation

Pixels
(2,000,000)

Lights (100,000)



• Compute sum of columns
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Problem Statement

= Σ ( )
Pi

xe
ls

Lights
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Low-Rank Assumption

= Σ ( )

Pi
xe

ls

Lights

• Column space is (close to) low-dimensional
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Ray-tracing vs Shadow Mapping

Lights

Pi
xe

ls

Point-to-point visibility: Ray-tracingPoint-to-many-points visibility: Shadow-mapping
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Computing Column Visibility

Shadow map at light 
position

Surface 
samples

• Regular Shadow Mapping Lights

Pi
xe

ls

1 shadow map
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Row-Column Duality

Shadow map        at 
sample position

• Rows: Also Shadow Mapping! Lights

Pi
xe

ls

1 shadow map



Image as a Weighted Column Sum

Compute small 
subset of columns

(i.e. pick some lights)

compute 
weighted sum

• The following is possible:

Use rows to choose a good set of columns (=lights)
87
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88

The Row-Column Sampling Idea

compute rows

(i.e. pick pixels, 
compute contrib

from ALL lights for 
each)

compute columns
(i.e. for the selected 

lights, compute 
contribution to all 

pixels)

weighted 
sum

?

choose columns 
(=lights) and 

weights

how to choose 
columns and 

weights?

Pi
xe

ls

Lights
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Clustering Approach

Clustering
Choose 

representative 
columns

Columns
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Reduced Matrix

Reduced 
columns



• Algorithm:
1. Cluster reduced columns
2. Choose a representative in each cluster, with 

probability proportional to weight
3. Approximate other columns in cluster by 

(scaled) representative

• This is an unbiased Monte Carlo estimator 
(of the sum of matrix columns)

• Which clustering minimizes its variance?

91

Monte Carlo Estimator



Weights and Information Vectors

• Weights wi

– Norms of reduced columns 
– Represent the “energy” of the light

• Information vectors xi

– Normalized reduced columns
– Represent the “kind” of light’s contribution
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Visualizing the Reduced Columns

Reduced columns: 
vectors in high-

dimensional space

visualize as …

radius = weight

position = information vector



• Minimize:

• where: 

94

The Clustering Objective

total cost of all clusters

cost of a 
cluster

sum over all 
pairs in it

weights squared distance 
between information 

vectors



Clustering Illustration

Strong but similar 
columns

Weak columns 
can be clustered 
more easily

Columns with 
various intensities 
can be clustered



How to minimize?

• Problem is NP-hard
• Not much previous research
• Should handle large input:

– 100,000 points
– 1000 clusters

• We introduce 2 heuristics:
– Random sampling
– Divide & conquer



Clustering by Random Sampling

Very fast (use optimized BLAS)
Some clusters might be too small / large



Clustering by Divide & Conquer

Splitting small clusters is fast
Splitting large clusters is slow



Combined Clustering Algorithm



Combined Clustering Algorithm
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Full Algorithm

Compute rows 
(GPU)

Weighted sum

Assemble rows into 
reduced matrix

Cluster reduced 
columns

Choose 
representatives

Compute columns 
(GPU)

Lights

Pi
xe

ls



• 2.1m polygons
• Mostly indirect & sky illumination
• Indirect shadows

102

Example: Temple

Our result: 16.9 sec 
(300 rows + 900 columns)

Reference: 20 min 
(using all 100k lights)

5x diff



• 388k polygons
• Mostly indirect illumination
• Glossy surfaces
• Indirect shadows

103

Example: Kitchen

Our result: 13.5 sec       
(432 rows + 864 columns)

Reference: 13 min       
(using all 100k lights)

5x diff



• 869k polygons
• Incoherent geometry
• High-frequency lighting
• Kajiya-Kay hair shader

104

Example: Bunny

Our result: 3.8 sec         
(100 rows + 200 columns)

Reference: 10 min 
(using all 100k lights)

5x diff
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Effect of exploration

# rows = 300
28 sec

# rows = 900
35 sec

Too few VPLs

#VPLs = 250k, # cols = 10k
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Comparison

Lightcuts (2M VPLs)
30 sec

MRCS (250k VPLs)
35 sec



• Data-driven stratification & importance 
sampling
– Same reason as for Lightcuts

• Stratification
– Split clusters with dissimilar lights

• Importance sampling
– Split clusters with high-contribution lights

107

Why does it work so well?



• Advantage
– Takes visibility into account in light selection 

(reduced matrix contains the full light 
contributions)

• Drawback
– Impossible to capture localized effects

• Low likelihood of getting the right row sample
• Global light selection

108

Comparison to Lightcuts



http://www.cs.dartmouth.edu/~fabio/publication.php?id=lightslice11

109

LightSlice

http://www.cs.dartmouth.edu/~fabio/publication.php?id=lightslice11�
http://www.cs.dartmouth.edu/~fabio/publication.php?id=lightslice11�


• Get the better from Lightcuts and MRCS

– Lightcuts: Localized selection of relevant lights

– MRCS: Take visibility into account in light 
selection

110

LightSlice: Idea



• Cannot use shadow maps for row/column 
sampling

• Clustering borrowed from the original MRCS 
paper

111

LightSlice: The Algorithm
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LightSlice: Matrix Slices

Image
Matrix slice 
visualization



• Not really a fair comparison to MRCS 
(uses ray traced visibility)
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LightSlice: Results
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Importance Caching

• Localized light (VPL) selection taking visibility 
into account



1. Importance caching
– Pick image pixels (2000 - 3000)
– For each such pixel, compute and cache 

contributions from all lights (i.e. matrix row)

2. Image rendering
– For each image pixel

• Collect nearby importance records
• Pick a VPL proportional to the cached contributions

115

Importance Caching: Algorithm
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Cached light importance

Importance record 1 Importance record 2 Importance record 3

Contributions to 
the record location
of individual lights
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Possible problems

OK Occlusion Geometry factor Irrelevant
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Solution: Multiple importances
Full light contribution Unoccluded contribution

Unoccluded contribution 
w/ bounded G-term

Uniform 
distribution



• Multiple importance sampling (MIS)
– See CG III slides

http://cgg.mff.cuni.cz/~jaroslav/teaching/2011-pg3/slides/krivanek-07-npgr010-2011-mc2.pptx

• New combination heuristic proposed in the paper

119

Distribution combination

http://cgg.mff.cuni.cz/~jaroslav/teaching/2011-pg3/slides/krivanek-07-npgr010-2011-mc2.pptx�


120

Results



121

Results: A 2-second rendering



• Fewer initial VPLs than any of the previous 
algorithms (up to 10k)
– Because of memory limitations
– Must run in iterations if more VPLs needed

• No data-driven stratification
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Importance Caching: Limitations



• Data-driven importance sampling may be 
dangerous

– Non-zero contribution may be sampled with very 
low, or even zero probability

– Being conservative is safer, but can reduce the 
advantage of data-driven IS

– For more information see [Owen & Zhou 2000] 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.2813
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Take-home message

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.2813�


• MRCS
– In theory suffers from the same problem, but
– light importance averaged over full columns, so it 

works ok
– BTW: Why do you think there’s global clustering 

in LightSlice 

• Lightcuts
– Has upper bounds so it knows which lights can be 

safely skipped

124

How ‘bout Lightcuts and MRCS?



• Lightcuts [Walter et al 05/06]

• Matrix Row Column Sampling [Hašan et al. 07]

• LightSlice [Ou & Pellacini 2011]

• Importance caching [Georgiev et al. 2012] 
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Scalable many-light methods



• [Segovia et al. 07]: Metropolis instant radiosity
– http://www710.univ-lyon1.fr/~jciehl/bsegovia/bat710/public_html/papers/mir.html 

Use Metropolis sampling to guide the VPL where 
they can contribute to the image

• [Georgiev & Slussalek 2010]
– http://www.iliyan.com/p/publications.html
– Use rejection sampling to reject VPLs that do not 

contribute significantly

126

Improved VPL distribution

http://www710.univ-lyon1.fr/~jciehl/bsegovia/bat710/public_html/papers/mir.html�
http://www.iliyan.com/p/publications.html�
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