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Instant radiosity

* Approximate indirect illumination by
Virtual Point Lights (VPLs)

1. Generate VPLs 2. Render with VPLs




Instant radiosity with glossy surfaces

Ground truth - ‘g‘c;)FVPLs :' s 3 1oo,oooV!s

* Large number of VPLs required

 True even for diffuse scenes
* Scalability issues



Scalable many-light methods

1. Generate many, many VPLs

2. Pick only the most relevant VPLs for rendering



Scalable many-light methods

* Choosing the right VPLs
— Per-pixel basis
e Lightcuts [Walter et al o5/06]
— Per-image basis
e Matrix Row Column Sampling [Hasan et al. 07]
— Somewhere in-between

e LightSlice [Ou & Pellacini 2011]
e Importance caching [Georgiev et al. 2012]



Scalable many-light rendering

Lightcuts
Multidimensional Lightcuts

Walter et al., SIGGRAPH 2005/2006

Slides courtesy Bruce Walter:
http://www.graphics.cornell.edu/~bjw/papers.html
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Lightcuts

Lightcuts: A Scalable Approach to Illumination

Bruce Walter  Sebastian Fernandez =~ Adam Arb Kavita Bala Michael Donikian  Donald P. Greenberg
Program of Computer Graphics, Cornell University*

Abstract

Lightcuts is a scalable framework for computing realistic illumina-

mination. At i

ing illumination from many poi '; s with a strongly mhf:rmr
cost. We show how a g of 1ig 1 be cheaply approximated
while bounding the maximum 1pp1nx1matmn error. A binary light
tree and pe puml metric are then used to adaptively partition the
lights into groups ntrol the errc ost tradeoff.

We also introduc

to accelerate the gene d i 'rmplex 1I—
lumination. Res ire dt_ I'IlHIl‘\[I'l[t_CI for five anpk\ and
show that lightc accurately approximate hundx thou-
sands of point 1 sing o y a few ed s ' . Re-
construction cuts ¢

* http://www.graphics.cornell.edu/~bjw/papers.html
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Complex Lighting

e Simulate complexillumination using VPLs
— Area lights
— HDR environment mag
— Sun & sky light
— Indirect illumination
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e Unifies illumination
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Scalable

 Scalable solution for many point lights
— Thousands to millions
— Sub-linear cost
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Lightcuts Problem
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Lightcuts Problem




Lightcuts Problem
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Key Concepts

 Light Cluster

— Approximate many lights by a single brighter light
(the representative light)
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Key Concepts

 Light Cluster

* Light Tree
— Binary tree of lights and clusters

Clusters -

Individual _
Lights




Key Concepts

 Light Cluster
* Light Tree

e A Cut

— A set of nodes that partitions the lights into
clusters

iedbe



Simple Example

Light Tree

Representative
Light
~ Clusters

L Individual
J  Lights




Three Example Cuts

Three Cuts




Three Example Cuts

Three Cuts




Three Example Cuts

Three Cuts




Three Example Cuts

Three Cuts




Algorithm Overview

* Pre-process
— Convert illumination to point lights
— Build light tree

* Foreach eyeray
— Choose a cut to approximate the illumination



Convert lllumination

 HDR environment map
— Importance sampling

* |Indirect lllumination

— Convert indirect to direct
illumination using Instant
Radiosity [Keller g7]

e Caveats: no caustics, clamping, etc.

— More lights = more indirect detail




Build light tree

* Cluster spatially close lights with similar
orientation

Light Tree

Representative 7]
Light
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Choose a cut

* Approximate illumination with a bounded error
 Different cut for each pixel
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lllumination Equation

result =Z M. G V. I

lights | |




Cluster Approximation

Sum pre-computed
e during light tree

construction
result = MJ GJ \/JZII

lights

J isthe representative light
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Cluster Error Bound

error < Mub Gub V bZ/

Iights
e Bound each term
— Visibility <=1 (trivial)

Cluster

, ‘ . .
,"%éé " et — Intensity is known
<0- ]
™ — Bound material and
\/ [ [
¢ W geometric terms using

cluster bounding volume

ub = upper bound



Perceptual Metric

e Weber's Law

— Contrast visibility threshold is fixed percentage of
signal

— Used 2% in our results

* Ensure each cluster’s error < visibility threshold
— Transitions will not be visible
— Used to select cut



Perceptual Metric

* Problem:

— We don't know the illumination so we don’t know
the threshold either

e (because threshold = 2% illumination)

* Solution:

— As we traverse the tree, gradually improve the
illumination estimate.

— Stop the traversal if the error bound for all cut
nodes is below threshold.



Cut Selection Algorithm

 Start with coarse cut (eg, root node)




Cut Selection Algorithm

* Select cluster with largest error bound




Cut Selection Algorithm

e Refine if error bound > 2% of total
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Cut Selection Algorithm
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Cut Selection Algorithm




Cut Selection Algorithm




Cut Selection Algorithm

* Repeat until cut obeys 2% threshold

58,0\




Error

Kitchen, 388K polygons, 4608 lights (72




Combined lllumination

Lightcuts 128s

4 608 Lights
(Area lights only)

Avg. 259 shadow rays / pixel

Lightcuts 290s

59 672 Lights
(Area + Sun/sky + Indirect)

Avg. 478 shadow rays / pixel
(only 54 to area lights)



Lightcuts
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Scalable

 Scalable solution for many point lights
— Thousands to millions
— Sub-linear cost
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Why does it work so well?

* Data-driven stratification & importance
sampling

* Stratification
— Clustering of similar lights in the light tree

* Importance sampling
— Subdividing clusters with high contribution

41



Main issue
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Bigscreen Model Cut Size (False Color)

Problem: Large cuts in dark areas
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Lightcuts Recap

* Key ingredients
— Upper bound on error

— Refinement of the highest-error nodes first



Multidimensional Lightcuts

)

Multidimensional Lightcuts

Cornell University*

Abstract

Multidimensional lightcuts is a new scalable method for efficiently
rendering rich visual effects such as motion blur, participating me-
dia, depth of field. and spatial anti-aliasing in complex scenes. It
introduc flexible, general rendering framev that unifies the
handling of such effects by discretizing the integrals into large sets
of gather and light points and adaptively approximating the sum of
all possible gather-light pair interacti

We create an implicit hier , the product graph, over the gather-
light pairs to rapidly and accurately approximate the contribution
from hundreds of millions of pairs per pixel while only evaluating
a tiny fraction (e.g., K chniques
of the prior Lightcuts : at a point,
however, nsidering the plete pixel integrals, we achieve
much greater efficiency and scalability.

Our example results demonstrate efficient handling of volume scat-

http://www.graphics.cornell.edu/~bjw/papers.html
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Problem

* Simulate complex, expensive phenomena
— Complex illumination
— Anti-aliasing
— Motion blur
— Participating media
— Depth of field

Time Pixel Lights
Area



Problem

* Simulate complex, expensive phenomena
— Complex illumination
— Anti-aliasing
— Motion blur
— Participating media
— Depth of field

pixel= | | | | Lxo).

Volume Time Pixel Lights
Area



Problem

* Simulate complex, expensive phenomena
— Complex illumination
— Anti-aliasing
— Motion blur
— Participating media
— Depth of field

svel= [ [ [ [ [ Loca.

Aperture Volume Time Pixel Lights
Area



Problem

* Complexintegrals over multiple dimensions

viel= || | | | Lxo).

Aperture Volume Time Pixel Lights
Area

— Requires many samples




Multidimensional Lightcuts

* Solves all integrals
simultaneously

e Accurate
e Scalable

Image time (secs)
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Point Sets

* Discretize full integral into 2 point sets
— Light points (L)

W 353 } Light points
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Camera




Point Sets

* Discretize full integral into 2 point sets
— Light points (L)
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Point Sets

* Discretize full integral into 2 point sets
— Light points (L)
— Gather points (G)
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Point Sets

* Discretize full integral into 2 point sets
— Light points (L)
— Gather points (G)
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Discrete Equation

* Sum over all pairs of gather and light points
— Can be billions of pairs per pixel

Pixel = Z SJ Mji Gji Vji /i
(jii) e GxL .
O



Product Graph

* Explicit hierarchy would be too expensive
— Up to billions of pairs per pixel

* Use implicit hierarchy
— Cartesian product of two trees (gather & light)



Product Graph
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Product Graph
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Product Graph

Product Graph
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Product Graph
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Product Graph

Product Graph
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Product Graph
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Cluster Representatives




Cluster Representatives




Error Bounds

* Collapse cluster-cluster interactions to point-cluster
— Minkowski sums

— Reuse bounds
from Lightcuts i |

___________

__________

e Compute maximum over multiple BRDFs

— Rasterize into cube-maps

e More details in the paper




Algorithm Summary

* Once perimage
— Create lights and light tree

* For each pixel
— Create gather points and gather tree for pixel

— Adaptively refine clusters in product graph until
all cluster errors < perceptual metric



Scalability

e Start with a coarse cut

— Eg, source node of product graph



Scalability

e Choose node with largest error bound & refine

— In gather or light tree

Lo WA L1 L6 L2 Lg e}
o OG-0 & 00

G1 <:>



Scalability

e Choose node with largest error bound & refine

— In gather or light tree

Lo WA L1 L6 L2 Lg e}
o OG-0 & 00

G1 (:)



Scalability

* Repeat process

Lo WA L1 L6 L2 Lg e}
© OG-0 O 000

G2

Ga1



Algorithm summary

e Until all clusters errors < perceptual metric

— 2% of pixel value (Weber's law)

Lo WA L1 L6 L2 Lg e}
o OG-0 & 000

G1 <:>



Results

* Limitations
— Some types of paths not included
e Eg, caustics

— Prototype only supports diffuse, Phong, and
Ward materials and isotropic media



Roulette

7,047,430 Pairs per pixel  Time 5go secs
Avg cut size 174 (0.002%)



Scalability

Image time vs. Gather points

Multidimensional
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Metropolis Comparison

........... Zoomed insets ...

A‘

Our result Metropolis
Time 9.8min Time 148min (15x)

Visible noise
5% brighter (caustics etc.)



Kitchen

5,518,900 Pairs per pixel  Time 705 secs
Avg cut size 936 (0.017%)



180 Gather points X 13,000 Lights = 234,000 Pairs per pixel

Avg cut size 447 (0.19%)



Scalable many-light rendering

Matrix Row-Column sampling

Hasan et al., SIGGRAPH 2007

Slides courtesy Milos Hasan:
http://www.cs.cornell.edu/~mhasan/
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Matrix Row-Column sampling

Matrix Row-Column Sampling for the Many-Light Problem

MiloS HaSan" Fabio Pellacini Kavita Bala
Cornell University Dartmouth College Cornell University

i
&

2.2m triangles: 300 rows, 900 columns, 16.9 5 388k triangles: 432 rows, 864 columns, 13.5 s 869K triangles: 100 rows, 200 columns, 3.8 s

Figure 1: In the above images, over 1.9 million surface samples are shaded from over 100 thousand point lights in a few seconds. This is
achieved by sampling a few hundred rows and columns from the large unknown matrix of surface-light interactions.

e http://miloshasan.net/

* Designed specifically for GPU rendering
(shadow mapping)

79
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Improving Scalability and Performance

Brute force

(100k VPLS)

WINES
(our result)

13.5 Sec




A Matrix Interpretation
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Problem Statement

e Compute sum of columns

Lights

Pixels

T T T T T T

82



Low-Rank Assumption

e Column space is (close to) low-dimensional

83



Ray-tracing vs Shadow Mapping

Lights
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Computing Column Visibility

* Regular Shadow Mapping Lights

\

\
1 shadow map

Pixels

................................... 4‘.»
............ » ' N W

T Shadow map at light

Surface

samples position
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Row-Column Duality

* Rows: Also Shadow Mapping!

A
A\ X4
\, %1y

Shadowmap  at
sample position

Pixels

Lights

1 shadow map
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Image as a Weighted Column Sum

* The following is possible:

Lights
5
X
(A
Compute small compute
subset of columns weighted sum

(i.e. pick some lights)

Use rows to choose a good set of columns (=lights)



The Row-Column Sampling Idea

Lights

Pixels

|

compute rows cHB&E%MR%E compute columns weighted

. E_ﬁrigm%ﬁad (i.e. for the selected sum
(i-e. pick pIXdS.’ Weightts? lights, compute
compute contrib .
from ALL lights for contribution to all
pixels)

each) 88



Clustering Approach

Columns

Choose
Clustering representative
columns

89



Reduced Matrix

Reduced




Monte Carlo Estimator

 Algorithm:
1. Cluster reduced columns

2. Choose arepresentative in each cluster, with
probability proportional to weight

3. Approximate other columns in cluster by
(scaled) representative

 Thisis an unbiased Monte Carlo estimator
(of the sum of matrix columns)

* Which clustering minimizes its variance?

91



Weights and Information Vectors

* Weights w,
— Norms of reduced columns
— Represent the “energy” of the light

* Information vectors x;
— Normalized reduced columns
— Represent the “kind” of light’s contribution



Visualizing the Reduced Columns

=l W

Reduced columns:
vectors in high- Q
dimensional space o
O
visualize as ... O O

/A . ® o
L L/

radius = weight

position = information vector o,



The Clustering Objective

« Minimize: Y cost(Cy)
p=1,....,k

- J
Y

total cost of all clusters

o where: cost(C) = Z Ww; Wj X _XJ'H2

/TN

weights squared distance
between information
vectors

cost of a sum over all
cluster pairsin it

94



Clustering lllustration

Columns with
various intensities
can be clustered

Strong but similar
columns

O

Weak columns
can be clustered
more easily

cost(C')

|
™
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How to minimize?

Problem is NP-hard

Not much previous research
Should handle large input:
— 100,000 points

— 1000 clusters

We introduce 2 heuristics:

— Random sampling
— Divide & conquer



Clustering by Random Sampling

Zk Very fast (use optimized BLAS)
= Some clusters might be too small / large




Clustering by Divide & Conquer

= Splitting small clusters is fast

= Splitting large clusters is slow



Combined Clustering Algorithm
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Combined Clustering Algorithm




Full Algorithm

Lights

Pixels

2 —_—
Assemble rows into Cluster reduced
reduced matrix columns
Compute rows
(GPU)
—_— e —
Choose
representatives Weighted sum

Compute columns
(€14®) 101



Example: Temple

ox diff
e 2.1m polygons : =

* Mostly indirect & sky illumination
* Indirect shadows

Our result: 16.9 sec Reference: 20 min

(300 rows + goo columns) (using all 200k lights) 102



Example: Kitchen

* 388k polygons "
* Mostly indirect illumination 1 |
* Glossy surfaces :
* Indirect shadows

Our result: 13.5 sec Reference: 13 min
(432 rows + 864 columns) (using all 200k lights) 103



Example: Bunny

869k polygons
ncoherent geometry
High-frequency lighting
Kajiya-Kay hair shader

Our result: 3.8 sec

(100 rows + 200 columns)

ox diff

Reference: 10 min
(using all 200k lights)

104



Effect of exploration

#VPLs = 250k, # cols = 10k

# rows =300 ‘ # rows = 900

28 sec sec
Too few VPLs 35

105



Comparison

Lightcuts (2M VPLs) MRCS (250k VPLS)
30 seC 35 sec
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Why does it work so well?

* Data-driven stratification & importance
sampling
— Same reason as for Lightcuts

* Stratification
— Split clusters with dissimilar lights

* Importance sampling
— Split clusters with high-contribution lights

107



Comparison to Lightcuts

* Advantage

— Takes visibility into account in light selection
(reduced matrix contains the full light
contributions)

e Drawback

— Impossible to capture localized effects
e Low likelihood of getting the right row sample
e Global light selection

108



LightSlice

LightSlice: Matrix Slice Sampling for the Many-Lights Problem Q

Jiawei Ou” Fabio Pellacini’ SIGGRAPHASIA
Dartmouth College Dartmouth College

f =)

http://www.cs.dartmouth.edu/~fabio/publication.php?id=lightslice11

109
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LightSlice: Idea

* Get the better from Lightcuts and MRCS

— Lightcuts: Localized selection of relevant lights

— MRCS: Take visibility into account in light
selection

110



LightSlice: The Algorithm

unknown
transport matrix

matrix slicing

slice sampling

S1

¥

p————

SI’

initial light clustering

> —-

—
po===== 5
i

N 1 Q= 1

T A

r~=-=1 o @ I

1 1

i [ e 5

] 1 5 - I

— e e [T T Tep
L

per-slice cluster refinement

per-slice
reconstruction

Figure 2: Algorithm overview: starting from an unknown light transport matrix, first we determine matrix slices by clustering surface
samples based on the geometric proximity. For each of these slices, a representative sample point is chosen and the corresponding row of A
is computed. These sampled rows form a reduced matrix R on which an initial light clustering is performed to capture the global structure of
A. For each slice, we then refine the initial light clusters based on the neighboring slices to effectively capture local lighting effects. Finally,
we render each slice by choosing representative columns (lights).

* Cannot use shadow maps for row/column

sampling

* Clustering borrowed from the original MRCS
paper




LightSlice: Matrix Slices

Matrix slice
visualization

.'l-"'"
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LightSlice: Results

mmm | igthSlice
mmm | ightcut
== MRCS

0.
?DD 300 400 500
time (seconds)

Figure 4: Average relative error vs. time plot for each algorithm
rendering the Sanmiguel scene. The images are rendered using the
same number of rows and slices as reported in Table 2 while vary-
ing the number of columns or maximum cut size. The result shows
that LightSlice is able to reduce error quicker than the other two
VPL methods.

* Not really a fair comparison to MRCS
(uses ray traced visibility)
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Importance Caching

EUROGRAPHICS 2012/ P. Cignoni, T. Ertl Volume 31 (2012), Number 2
(Guest Editors)

Importance Caching for Complex Illumination

Iliyan \Ge.u::r;__?,ie.\.-'Tl Jaroslav Kfivanek®= Stefan Pt‘)p[ﬁﬂ.’T] Philipp Slusallek' !~

'Saarland University and Intel VCI, Saarbriicken 2Charles Un iversity, Prague YDFKI, Saarbriicken

* Localized light (VPL) selection taking visibility
Into account

114



Importance Caching: Algorithm

1. Importance caching
— Pick image pixels (2000 - 3000)

— For each such pixel, compute and cache
contributions from all lights (i.e. matrix row)

2. Image rendering

— Foreachimage pixel
e (Collect nearby importance records
e PickaVPL proportional to the cached contributions

115



Cached light importance

Contributions to
the record location
of individual lights

11 15)

Importancerecord1  Importancerecord2  Importance record 3
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Possible problems

(0] ¢ Occlusion Geometry factor Irrelevant

Iy x b hHh L x

Figure 2: Four illumination conditions, encountered when reusing information from importance records (IRs) I} and I, at shad-

ing point x. At each IR we define four distributions, designed to discover VPL contributions under a different condition. a) In the

case of smooth illumination in the local neighborhood, full contribution sampling (F) can achieve > proportionality to the
integrand. b) Unoccluded contribution sampling (U ) is robust to VPL contribution changes due to varying occlusion with posi-
tion. ¢) Bounded contribution sampling (B) in addition discovers new contributions due to orientation changes. d) Conservative
uniform sampling (C) handles situations where the IR importance information is irrelevant at the shading point x.
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Solution: Multiple importances

Full light contribution Unoccluded contribution

0.12

7 H J| ‘ H ‘u g ‘ ‘ M

M._ _.I.L J il L. M..m_ 4_.J.|___J_.d_d.|._l...._..l..4.l_._L..u_

0.02

E 0018
5 m@w wl  ad |

0.03
Uniform Unoccluded contribution
distribution w/ bounded G-term
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Distribution combination

* Multiple importance sampling (MIS)
— See CG Il slides

http://cgq.mff.cuni.cz/~jaroslav/teaching/2011-pg3/slides/krivanek-07-npqgro10-2011-mc2.pptx

* New combination heuristic proposed in the paper
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Results

= PT
= RIS
= [C (our)

0.00

100 200 300 400 500 600  time(s) 200 300 400 500 600  time(s)
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Results: A 2-second rendering

Reference

121



Importance Caching: Limitations

e Fewer initial VPLs than any of the previous
algorithms (up to 10k)

— Because of memory limitations
— Must run in iterations if more VPLs needed

e No data-driven stratification



Take-home message

» Data-driven importance sampling may be
dangerous

— Non-zero contribution may be sampled with very
low, or even zero probability

— Being conservative is safer, but can reduce the
advantage of data-driven IS

— For more information see [Owen & Zhou 2000]

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.2813

123


http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.2813�

How ‘bout Lightcuts and MRCS?

* MRCS

— In theory suffers from the same problem, but

— light importance averaged over full columns, so it
works ok

— BTW: Why do you think there’s global clustering
in LightSlice ©

* Lightcuts

— Has upper bounds so it knows which lights can be
safely skipped
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Scalable many-light methods

Lightcuts [Walter et al 05/06]
Matrix Row Column Sampling [Hasan et al. 07]
LightSlice [Ou & Pellacini 2011]

Importance caching [Georgiev et al. 2012]



Improved VPL distribution

* [Segovia et al. 07]: Metropolis instant radiosity

— bttp://www7z10.univ-lyona.fr/~jciehl/bsegovia/batzio/public _html/papers/mir.html

Use Metropolis sampling to guide the VPL where
they can contribute to the image

* [Georgiev & Slussalek 2010]
— http://www.iliyan.com/p/publications.html

— Use rejection sampling to reject VPLs that do not
contribute significantly
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